
 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

 ISSN: 2320-1363

 1

Effective Fuzzy Characteristics of Forward Search in Xml

Information

K.V.Ajay Kumar*1, P Ramesh Babu*2

M.Tech (CSE) Student Department of CSE, Priyadarshini Institute of Technology & Science, Chintalapudi, Guntur(Dist), Ap, India.

Associate Professor, Department of CSE in Priyadarshini Institute of Technology & Science, Chintalapudi, Guntur(Dist), Ap, India

kvajaykumar45@gmail.com, rameshbabup81@gmail.com

Abstract

Keywords are suitable for query XML streams without schema information. In current forms of

keywords search on XML streams and rank functions do not always represent user‟s intensions.

In this paper the skyline Top-K keyword queries, a novel kind of keyword queries on XML

streams are presented. This paper studies the problem of XML message brokering with user

subscribed profiles of keyword queries and presents a Keyword based XML Message Broker

(KEMB) to address this problem. In case where the user has limited knowledge about the data

often the user feels left in the dark when issuing queries, and has to use a try and see approach

for finding information. In this paper we proposed fuzzy type forward search in XML data, a

new information access paradigm in which the system searches XML data on the fly as the user

types in query keywords. It allows users to explore data as they type even in the presence of

minor errors of their keywords. Our proposed method has the following features: 1) search as

you type: it extends auto complete by supporting queries with multiple keywords in XML data.

2) Fuzzy: it can find high quality answers that have keywords matching query keywords

approximately. 3) Efficient: our effective index structures and searching algorithms can achieve

a high interactive speed. We have implemented our methods on real data sets and the

experimental results show that our method achieves high search efficiency and result quality.

Keywords: XML, Keyword Search, Characteristics of Forward Search, Fuzzy Search.

1. Introduction

We propose XIR, a novel method for

processing partial match queries on

heterogeneous XML documents using

information retrieval (IR) techniques. A

partial match query is defined as the one

having the descendent-or-self axis in its path

expression. In its general form, a partial

match query has branch predicates forming

branching paths. The objective of XIR is to

efficiently support this type of queries for

large-scale documents of heterogeneous

schemas. XIR has its basis on the

conventional schema-level methods using

relational tables and significantly improves

their efficiency using two techniques: an

mailto:kvajaykumar45@gmail.com
mailto:rameshbabup81@gmail.com

 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

 ISSN: 2320-1363

 2

inverted index technique and a novel prefix

match join. The former indexes the labels in

label paths as keywords in texts, and allows

for finding the label paths matching the

queries more efficiently than string match

used in the conventional methods. The latter

supports branching path expressions, and

allows for finding the result nodes more

efficiently than containment joins used in

the conventional methods. We compare the

efficiency of XIR with those of XRel and

XParent using XML documents crawled

from the Internet. The results show that XIR

is more efficient than both XRel and

XParent by several orders of magnitude for

linear path expressions, and by several

factors for branching path expressions.

Current data sharing and integration among

various organizations require a central and

trusted authority to first collect data from all

data sources and then integrate the collected

data. In this paper we propose TASX a

fuzzy type-forward search method in XML

data. TASX searches the XML data on the

fly as user‟s type in query keywords even in

the presence of minor errors of their

keywords. TASX provides a friendly

interface for users to explore XML data, and

can significantly save users typing effort. In

this article, we study research challenges

that arise naturally in this computing

paradigm. The main challenge is search

efficiency. Each query with multiple

keywords needs to be answered efficiently.

To make search really interactive, for each

keystroke on the client browser, from the

time the user presses the key to the time the

results computed from the server are

displayed on the browser, the delay should

be as small as possible. An interactive speed

requires this delay should be within

milliseconds. Notice that this time includes

the network transfer delay, execution time

on the server, and the time for the browser to

execute its Java Script. This low-running-

time requirement is especially challenging

when the backend repository has a large

amount of data. To achieve our goal, we

propose effective index structures and

algorithms to answer keyword queries in

XML data. We examine effective ranking

functions and early termination techniques

to progressively identify top-k answers. To

the best of our knowledge, this is the first

paper to study fuzzy type- forward search in

XML data. To summarize, we make the

following contributions:

 We formalize the problem of fuzzy

type- forward search in XML data.

 We propose effective index structure

and efficient algorithms to achieve a

high interactive speed for fuzzy type-

forward search in XML data.

 We developed ranking functions and

early termination techniques to

progressively and efficiently identify

the top-k relevant answers.

 We have conducted an extensive

experimental study. The results show

that our methos achieves high search

efficiency and result quality.

 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

 ISSN: 2320-1363

 3

Fig1.1 An XML Document.

 In an XML tree, every two nodes are

connected through their LCA.

 Not all connected trees are relevant

even if the size is small.

 The focus is defining query results to

prune irrelevant sub tree.

2. Related Work

Keyword search in XML data has attracted

great attention recently. Xu and

Papakonstantinou proposed Smallest Lowest

Common Ancestor (SLCA) to improve

search efficiency. Sun et al. Studied multi

way SLCA-based keyword search to

enhance search performance. Schema free

X Query employed the idea of meaningful

LCA, and proposed a stack based sort-merge

algorithm by considering XML structures

and incorporating a new function Mlcas into

XQuery. XSEarch focuses on the semantics

and the ranking of the results, and extends

keyword search. It employs the semantics of

meaningful relation between XML nodes to

answer keyword queries, and two nodes are

meaningfully related if they are in same set,

which can be given by administrators or

users.

3. Problem Formulation of Fuzzy

Characteristics of Forward Search

In XML Data

We first introduce how TASX works for

queries with multiple keywords in XML

data, by allowing minor errors of query

keywords and inconsistencies in the data

itself. Assume there us an underling XML

document that resides on a server. Each

keystroke that the user types invoke a query

which includes the current string the user

has typed. The browser sends the query to

the server, which computes and returns to

the user the best answer ranked by their

relevancy to the query. The server first

tokenizes the query string into several

keywords using delimiters such as the space

character. For the partial keywords we

would like to know the possible words the

user intends to type. However given the

limited information we can only identify a

set of complete words I the data set which

have similar prefixes with the partial

keywords. This set of complete words is

called the predicted words. We use edit

distance to qualify the similarity between

two words. The edit distance between two

words S1 and S2 denoted by ed(S1,S2) is the

minimum number of edit operations of

single characters needed to transform the

first one to the second.

4. LCA-Based Fuzzy Characteristics

of Forward Search

In this section we propose an LCA-based

fuzzy type- forward search method. We use

 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

 ISSN: 2320-1363

 4

the semantics of ELCA to identify relevant

answer on top of predicted words.

Figure 4.1 The trie on top of words in figure

1.1

4.1 Index Structure

We use a trie structure to index the words in

the underlying XML data. Each word w

corresponds to a unique path from the root

of the trie to a leaf node. Each node on the

path has a label of a character in w. for each

node we store an inverted list of the leaf

node. For instance consider the XML

document in Fig1.1. The trie structure for

the tokenized words is shown in Fig.4.1. the

word “mich” has a node ID of 10. Its

inverted list includes XML elements 18 and

26.

4.2 Answering Queries with a Single

Keyword:

Firstly study how to answer a query with a

single keyword using the trie structure. Each

keystroke that a user types invokes a query

of the current string and the client browser

sends the query string to the server. We first

consider the case of exact search. On native

way to process such a query on the server is

to answer the query from scratch as follows:

we first find the trie node corresponding to

this keyword by traversing the trie from the

root. For example suppose a user types in

the character “mich” letter by letter. When

the user types in the character “m” te client

sends the query “m” to the server. The

server finds the trie node corresponding to

this keyword (node 5). Then it locates the

leaf descendants of node 5 and retrieves the

corresponding predicted words and the

predicted XML elements. When the user

types in the character “I” the client sends a

query string “mi” to the server. The server

answers the query from scratch as follows: it

first finds node 6 for this string then locates

the leaf descendants of node 6. It retrieves

the corresponding predicted words (“mich”).

In general the user may modify the previous

query string arbitrarily, or copy and paste a

completely different string. In this case for

the new query string among all the

keywords typed by the user, we identify the

cached keyword that has the longest prefix

with the new query. Then we use this prefix

to incrementally answer the new query, by

inserting the characters after the longest

prefix of the new query one by one.

4.3 Answering Queries with Multiple

Keywords:

Now we consider how to do fuzzy type-

forward search in the case of a query with

multiple keywords. For a keystroke that

invokes a query, we first tokenize the query

string into keywords k1, k2 kl . For each

keyword ki (l ≤ i ≤ l), we compute its

 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

 ISSN: 2320-1363

 5

corresponding active nodes, and for each

such active node, we retrieve its leaf

descendants and corresponding inverted

lists. Then, we compute union list Uki for

every ki. Finally, we compute the predicted

answers on top of lists Uk1, Uk2 . . . Ukl .We

use the semantics of ELCA to compute the

corresponding answers. We use the binary-

search-based method to compute ELCAs.

5. Progressive And Effective Top –K

Fuzzy Characteristics of Forward

Search

The LCA-based Characteristics of forward

search algorithm in XML data has two main

limitations. First, they use the “AND”

semantics between input keywords of a

query, and ignore the answers that contain

some of the query keywords (but not all the

keywords). For example, suppose a user

types in a keyword query “DB IR Tom” on

the XML document in Fig. 1.1. The ELCAs

to the query are nodes 15 and 5. Although

node 12 does not have leaf nodes

corresponding to all the three keywords, it

might still be more relevant than node 5 that

contains many irrelevant papers. Second, in

order to compute the best results to a query,

existing methods need find candidates first

before ranking them, and this approach is

not efficient for computing the best answers.

A more efficient algorithm might be able to

find the best answers without generating all

candidates.

In our approach each node on the XML tree

could be potentially relevant to a keyword

query, and we use a ranking function to

decide the best answer to the query. For

instance consider the XML document in

Fig1.1 for the keyword “DB”, we index

nodes 13, 16, 12, 15, 9, 2, 8, 1, and 5 for this

keyword as shown below fig 5.1.

Figure 5.1. The extended trie on top of

words in figure.1.1.

For the keyword “IR”, we index nodes 6, 16,

24, 5, 15, 23, 2, 20, and 1. For the keyword

“Tom”, we index nodes 14, 17, 12, 15, 9, 2,

8, 1, and 5. The nodes are sorted by their

relevance to the keyword. Fig. 5.1 gives the

extended trie structure. For instance, assume

a user types in a keyword query “DB IR

Tom”. We use the extended trie structure to

find nodes 15 and 12 as the top-2 relevant

nodes. We propose Minimal-Cost Trees

(MCTs) to construct the answers rooted at

nodes 15 and 12. We develop effective

ranking techniques to rank XML elements

on the inverted lists in the extended trie

structure. We can employ threshold-based

algorithms to progressively and efficiently

identify the Top-K relevant answers.

Moreover, our approach automatically

supports the “OR” semantics.

5.1. Minimal Cost Tree:

 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

 ISSN: 2320-1363

 6

This section we introduce a new framework

to find relevant answers to a keyword query

over an XML document. In the framework

each node on the XML tree is potentially

relevant to the query with different scores.

This sub-tree is called the “minimal-cost

tree” for this node. Different nodes

correspond to different answers to the query,

and we will study how to quantify the

relevance of each answer to the query for

ranking. Given a keyword query each node n

in the XML document is potentially relevant

to the query. We introduce the notion of

minimal cost tree rooted at node n to define

the answer to the query.

5.2 Ranking Minimal Cost Trees:

In this section, we discuss how to rank a

minimal cost tree. We first introduce a

ranking function for exact search and then

extend the ranking function to support fuzzy

search.

5.2.1 Ranking for Exact Search.

To rank a Minimal-Cost Tree, we first

evaluate the relevance between the root node

and each input keyword, and then combine

these relevance scores for every input

keyword as the overall score of the

Minimal-Cost Tree. We propose two

ranking functions to compute the relevance

score between the root note n to an input

keyword ki. The first one considers the case

that n contains ki. The second one considers

the case that n does not contain ki but has a

descendant containing ki. However, if n does

not contain ki, the first ranking function

cannot quantify the relevancy between node

n and keyword ki. To address this issue, we

extend the first ranking function and propose

the second ranking function. Given a

keyword kj, a quasi-content node n for kj,

suppose p is the pivotal node for n and kj.

The distance between n and p can indicate

how relevant the node n is to keyword kj.

The smaller the distance between n and p,

the larger relevancy score between n and kj

should be. Based on this observation, we

proposed the second ranking function to

compute the relevance between n and kj as

follows:

SCORE2(n,kj)=

1 , .

 Where P is the set of pivotal nodes for

n and kj, � is a damping factor between 0

and 1, and Δ(n, p) denotes the distance

between node n and node p. As the distance

between n and p increases, n becomes less

relevant to kj. As a trade off, our

experiments suggested that a good value for

� is 0.8, and our method achieves the best

performance at this point. This is because it

will degrade the importance of ancestor

nodes for a smaller α and thus may miss

meaningful and relevant results; on the

contrary, it will involve some duplicates and

less important results for a larger � .

6. Conclusion

In this article, we studied the problem of

fuzzy type- forward search in XML data.

We are proposed effective index structures,

efficient algorithms, and novel optimization

techniques to progressively and efficiently

identify the Top-K answers. We examined

the LCA-based method to interactively

identify the predicted answers. We have

 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

 ISSN: 2320-1363

 7

developed a Minimal-Cost-Tree-based

search method to efficiently and

progressively identify the most relevant

answers. We proposed a heap-based method

to avoid constructing union lists on the fly.

We devised a forward-index structure to

further improve search performance. We

have implemented our method, and the

experimental results show that our method

achieves high search efficiency and result

quality.

References

[1] S. Agrawal, S. Chaudhuri, and G. Das,

“Dbxplorer: A System for Keyword-Based

Search over Relational Databases,” Proc.

Int‟l Conf. Data Eng. (ICDE), pp. 5-16,

2010.

[2] S. Amer-Yahia, D. Hiemstra, T.

Roelleke, D. Srivastava, and G. Weikum,

“Db&ir Integration: Report on the Dagstuhl

Seminar „Ranked Xml Querying‟,”

SIGMOD Record, vol. 37, no. 3, pp. 46- 49,

2008.

[3] M.D. Atkinson, J.-R. Sack, N. Santoro,

and T. Strothotte, “Min-max Heaps and

Generalized Priority Queues,” Comm.

ACM, vol. 29, no. 10, pp. 996-1000, 2011.

[4] A. Balmin, V. Hristidis, and Y.

Papakonstantinou, “Object rank: Authority-

Based Keyword Search in Databases,” Proc.

Int‟l Conf. Very Large Data Bases (VLDB),

pp. 564-575, 2011.

[5] Z. Bao, T.W. Ling, B. Chen, and J. Lu,

“Effective XML Keyword Search with

Relevance Oriented Ranking,” Proc. Int‟l

Conf. Data Eng. (ICDE), 2009.

[6] H. Bast and I. Weber, “Type Less, Find

More: Fast Autocompletion Search with a

Succinct Index,” Proc. Ann. Int‟l ACM

SIGIR Conf. Research and Development in

Information Retrieval (SIGIR), pp. 364-371,

2006.

[7] H. Bast and I. Weber, “The

Completesearch Engine: Interactive,

Efficient, and towards Ir&db Integration,”

Proc. Biennial Conf. Innovative Data

Systems Research (CIDR), pp. 88-95, 2010.

[8] G. Bhalotia, A. Hulgeri, C. Nakhe, S.

Chakrabarti, and S. Sudarshan, “Keyword

Searching and Browsing in Databases Using

Banks,” Proc. Int‟l Conf. Data Eng. (ICDE),

pp. 431-440, 2011.

[9] Y. Chen, W. Wang, Z. Liu, and X. Lin,

“Keyword Search on Structured and Semi-

Structured Data,” Proc. ACM SIGMOD

Int‟l Conf. Management of Data, pp. 1005-

1010, 2011.

[10] E. Chu, A. Baid, X. Chai, A. Doan, and

J.F. Naughton, “Combining Keyword

Search and Forms for Ad Hoc Querying of

Databases,” Proc. ACM SIGMOD Int‟l

Conf. Management of Data, pp. 349-360,

2011.

[11] S. Cohen, Y. Kanza, B. Kimelfeld, and

Y. Sagiv, “Interconnection Semantics for

Keyword Search in Xml,” Proc. Int‟l Conf.

Information and Knowledge Management

(CIKM), pp. 389-396, 2011.

